
A Poor Programmer's Fix for
Username/Password

Michael Scott

MIRACL Labs
mike.scott@miracl.com

October 12, 2015

Abstract. You are a programmer that uses the Internet a lot. You don't
want to be one of those unfortunates that gets their password hacked,
due to some asshole's failure to properly protect the password �le on a
remote server. You don't want to change the world, you just want to work
securely with the world as it is. You haven't the patience for elaborate
procedures. You don't want it to cost you. How can you live with the
broken Username/Password system, and yet feel certain that while the
rest of the world may be vulnerable, you will be OK?

1 Introduction

First let us quickly recall how Username/Passsword works. The only crypto-
graphic tool required is the humble hash function like the standard SHA256,
which converts a string into a unique 256-bit �ngerprint. So as a function it
works like y = H(x) where x is a string, and y is the �ngerprint. Inputs can be
concatenated, so x = H(a, b) just means that the string b is appended to the
end of a to provide the input.

Once you register, the server generates a random �salt� s and stores s,H(p, s)
against your username, where p is your password. All this information for every
service user or client is stored in a password �le. When you enter your username
and password, the server looks up your salt, calculates H(p, s) and compares it
with the stored value. If its good, you are in. Which is all very �ne and dandy,
but then a hacker steals the password �le, and using a dictionary of common
passwords, tries every one until they start getting hits. Your only protection is to
make sure and use a password which is not in that dictionary, hence those tedious
password policies requiring you to remember an awful looking password for every
service you use, and which you really need to write down somewhere. For the
hacker who has stolen the password �le they are not necessarily motivated to
hack you individually. In fact they probably know nothing about you in advance
of the attack. For them, its not personal.

2 Attacks and Defenses

First let us step back a bit and look at the issue from the hacker point of view.
For a hacker the aim is often to maximimize the bang for the buck. In other



words with the minimum amount of time and e�ort they would like to capture
as many individual credentials as possible. Attacks can be classi�ed as scalable
or non-scalable. A scalable attack captures the credentials of multiple individu-
als with just one attack. A scalable attack might be launched against the server
as described above. Or it may be launched by spreading a virus that attacks
infected apps on the client side, capturing the Username/Password combination
and reporting them back to the hacker. A non-scalar attack on the other hand
requires an individualized e�ort again each individual target. Non-scalar attacks
therefore tend to be targeted, and if for some reason you have personally at-
tracted the attention of a talented hacker, particularly if they work for a well
resourced government agency, you are probably in big trouble.

One major weakness of the Username/Password mechanism is that the User-
name and the Password are transmitted directly to the server, albeit under cover
of the SSL protocol. But this does imply that at both ends of the link there are
potential points of attack, maybe by a virus, or by an employee on the server
side. A much better idea would be a challenge-response based protocol in which
the client secret is never transmitted from client to server, but rather used to
construct a speci�c response to a random server challenge.

But for this exercise we will simply try and improve Username/Password
as much as we can. Our plan is to avoid scalable attacks (a) on the server
side by using very strong passwords, and (b) on the client side by deploying
an individualized app, requiring a speci�c and targeted non-scalable attack to
hack. We believe that just by forcing a hacker to go after individuals, rather
than harvesting millions of passwords in a single attack, that this is enough to
improve the user's security by many degrees of magnitude.

For more complete protection there really is a need for a better two-factor
zero-knowledge challenge-response protocol, like our own M-Pin. But that's an-
other story.

3 The Poor Programmer's Protocol

Consider now a specially tailored password generator app. Stored in the source
code somewhere is a random string, created by the programmer getting their 3
year old grandson to bang on the keyboard

char r[]="dfgneNVriothjOerjgorigjq[89u8qu1j)(kdUjSSgj4[jjjr";

The program consists of a drop-down list with the names of the services
with which the programmer has an account. There is also a box into which they
enter their one-and-only Master Password p when the program �rst starts up,
and another box which requires a short �xed 4-digit PIN number. When they
select the name of a service n from the drop-down list, a suitable password
for the selected service is calculated as pwn = H(p,H(PIN,H(r,H(n)))), and
automatically copied to the clipboard. In other words the password is generated

2



from a mix of the Master Password, the PIN, the name of the service (like
�GitHub�), and the random string.

The user only needs to enter the master password once when they activate
the app at the start of their working day. When they navigate to a service on
the internet, they click on the app, enter the �xed PIN, and click on the name
of the service from the drop-down list, and �nally click �paste� in the service's
password �eld. And thats it. Easier than typing in a long complex password.
Note that the entered password pwn is never visible, and so remains unknown
even to the user. We are assuming of course that the average user has no problem
remembering one reasonably secure password and a PIN number.

The binary of the app can be copied to other computers and devices that the
programmer owns. Its source code can be kept o�ine on a USB key.

4 Security

One of the biggest disincentives for a hacker is to have to go after each service
user individually, and hack into their individual device. That is a major hassle,
and is probably outside of their skill set. And one component of the password
is the random r tucked inside the binary of your very own app, a copy of which
is not available to anyone else on the planet. And you can get creative with
r, and where it is stored in the source code. Although the original source code
might be open source (see below), as a programmer you can modify it. For
example you can spread pieces of r all over the program, and recombine them
programmatically. Just do enough to make your binary unique.

Ideally your one-and-only Master Password should not be in any dictio-
nary, certainly when combined with the PIN. One attack is to steal the
password �le from a server, then access your computer and try password
and PIN guesses until they get a hit on the password �le entry. A stan-
dard way to make password guessing more di�cult would be to calculate
it as pwn = H(H(H(H(H(H(H....(H(p)))....)))),H(PIN,H(r,H(n))), with p
hashed maybe thousands of times, so that it takes a few seconds to calculate.
Indeed since you only enter it once during the working day, you might a�ord to
wait even a minute or two.

Of course if your app binary is stolen it can be reverse engineered and r
extracted. But �rst they got to get your app binary, and perform a specially tai-
lored attack on it, because there is none other quite like it. If some-one sits down
at your computer while the app is active, they cannot generate your passwords,
as they don't know the PIN. Note that nothing related to the Master Password
or the PIN is stored inside of the app, so reverse engineering your app doesn't
compromise either.

Appendix

OK, lets do it. First download the programming tools from www.qt.io. These
allow you to develop the application across a range of devices and operating

3



systems. I just did it for a Windows desktop PC. Pay attention to the licensing
arrangements, although if I read it right, and since its for personal use, its free.

The program consists of just 4 �les.

� main.qml � This describes the extremely simple user interface
� qpass.h � a header �le
� main.cpp � the main C++ �le
� hash.cpp � the hashing code and some utility code

As always when implementing, some issues arise. To create the passwords we
basically convert the output of the �nal hash to base64 encoding, which gives us
a mix of upper and lower case letters and digits, and occasional special symbols
as dictated by most password policies. However we check the output to ensure
it contains at least one uppercase letter, one lowercase letter and one digit. If
it doesn't we hash it again until it does. Another decision is the length of the
password. We decided on 12 characters, giving 72-bits of entropy. So a typical
password generated by this program looks like hSUgpKA09v6Z.

Here is the main.qml �le. Observe where you enter your list of services. If
you want to add another one later, pop it in here and recompile the app.

import QtQuick 2.3
import QtQuick.Controls 1.2

ApplicationWindow {
visible: true
width: 280
height: 150
maximumHeight: 150
maximumWidth: 280
title: qsTr("Password Manager")

TextInput {
x: 100
y: 20
width: 160
focus: true
enabled: true
objectName: "favorite"

}

TextField {
x:100
y:60
width:50
echoMode: TextInput.Password
maximumLength: 6
enabled: false
objectName: "pin"

}

ComboBox {
x: 100
y: 100
width: 160

// *** Enter your own list of services here

model: [ "None", "GitHub", "Stash", "Facebook" ]
objectName: "service"
enabled: false

4



}

Label {
x: 10
y: 20
text: qsTr("Master Password")

}

Label {
x: 10
y: 60
text: qsTr("Enter PIN")

}

Label {
x: 10
y: 100
text: qsTr("Choose Service")

}
}

Next the header �le qpass.h.

#include <QObject>

#ifndef QPASS
#define QPASS

class QPass : public QObject
{

Q_OBJECT

private:
QString pwdtext;
QString srvtext;
int PIN;
QObject *pwd,*srv,*pin;
char ph[32],digest[32];

public:
QPass(QObject *pwdi,QObject *srvi,QObject *pini) { pwd=pwdi; srv=srvi; pin=pini; }

public slots:
void setpwValue();
void setsvValue();
void setpnValue();

};

#define unsign32 unsigned int

typedef struct {
unsign32 length[2]; /**< 64-bit input length */
unsign32 h[8]; /**< Internal state */
unsign32 w[64]; /**< Internal state */
} hash;

extern void HASH_init(hash *H);
extern void HASH_process(hash *H,int b);
extern void HASH_hash(hash *H,char *h);

extern void tobase64(char *,char *);
extern void HASH_again(char *);
extern int policy(char *);

#define PASSLEN 9 // password lengh in bytes - multiple of 3
#define HCOUNT 10000 // hash iterations

5



#endif // QPASS

Now the main C++ program. Observe the place where you (or your grandson)
enters the long random string.

#include <QApplication>
#include <QQmlApplicationEngine>
#include <QClipboard>
#include <String>
#include "qpass.h"

// *** Enter your own random number here

QString r="jijvijHJodP67odld0osjJhHuU7Yshsh&jssKskJS5sgSHLSl;sSss";

// Master password entered
void QPass::setpwValue()
{

hash sh;
QByteArray ba;

pwdtext=pwd->property("text").toString();
pwd->setProperty("text","");

// First hash Master Password

HASH_init(&sh);
ba=pwdtext.toLatin1();
for (int i=0;i<ba.length();i++)

HASH_process(&sh,ba[i]);
HASH_hash(&sh,ph);

pwdtext.clear();
// digest=H(H(H(H(pw))))))
for (int i=0;i<HCOUNT;i++) HASH_again(ph);

pin->setProperty("enabled",true);
pin->setProperty("focus",true);
pwd->setProperty("enabled",false);

}

// PIN entered
void QPass::setpnValue()
{

hash sh;
PIN=pin->property("text").toInt();
srv->setProperty("enabled",true);
pin->setProperty("text","");
pin->setProperty("enabled",false);

HASH_init(&sh);
HASH_process(&sh,PIN%100);
HASH_process(&sh,(PIN/100)%100);
HASH_process(&sh,PIN/10000);
for (int i=0;i<32;i++) HASH_process(&sh,ph[i]);
HASH_hash(&sh,digest);

}

// Service picked from list
void QPass::setsvValue()
{

QChar ch;
hash sh;

6



char b64[50];
QByteArray ba;

if (srv->property("currentIndex")==0) return;

srvtext=srv->property("currentText").toString();

HASH_init(&sh);
ba=srvtext.toLatin1();
for (int i=0;i<ba.length();i++)

HASH_process(&sh,ba[i]);
for (int i=0;i<32;i++) HASH_process(&sh,digest[i]);
HASH_hash(&sh,digest);

//digest=H(Service,H(H(H(H(pw)))))

HASH_init(&sh);
ba=r.toLatin1();
for (int i=0;i<ba.length();i++)

HASH_process(&sh,ba[i]);
for (int i=0;i<32;i++) HASH_process(&sh,digest[i]);
HASH_hash(&sh,digest);

//digest=H(r,H(Service,H(H(H(H(pw)))))

tobase64(b64,digest); // Convert to base64

// check it meets policy requirements - else hash again until it does
while (!policy(b64))
{

HASH_again(digest);
tobase64(b64,digest);

}

// push password onto Clipboard
QClipboard *clipboard = QApplication::clipboard();
clipboard->setText(b64);

srv->setProperty("currentIndex",0);
srv->setProperty("enabled",false);
pin->setProperty("enabled",true);
PIN=0;
for (int i=0;i<32;i++) digest[i]=0;

}

int main(int argc, char *argv[])
{

QApplication app(argc, argv);
QQmlApplicationEngine engine;
engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

// Access the root object
QObject *rootObject = engine.rootObjects().first();

// Access the elements
QObject *Favorite = rootObject->findChild<QObject*>("favorite");
QObject *Service = rootObject->findChild<QObject*>("service");
QObject *Pin = rootObject->findChild<QObject*>("pin");

QPass Password(Favorite,Service,Pin);

// Set up the signals and slots
engine.connect(Service,SIGNAL(currentIndexChanged()),&Password,SLOT(setsvValue()));
engine.connect(Favorite,SIGNAL(accepted()),&Password, SLOT(setpwValue()));
engine.connect(Pin,SIGNAL(accepted()),&Password, SLOT(setpnValue()));

// let rip
return app.exec();

7



}

Finally the �le hash.cpp which contains the SHA256 hashing code and some
utility functions.

/*
* Implementation of the Secure Hashing Algorithm (SHA-256)
*
* Generates a 256 bit message digest. It should be impossible to come
* come up with two messages that hash to the same value ("collision free").
*
* For use with byte-oriented messages only. Could/Should be speeded
* up by unwinding loops in HASH_transform(), and assembly patches.
*/

#include <cctype>
#include "qpass.h"

#define H0 0x6A09E667L
#define H1 0xBB67AE85L
#define H2 0x3C6EF372L
#define H3 0xA54FF53AL
#define H4 0x510E527FL
#define H5 0x9B05688CL
#define H6 0x1F83D9ABL
#define H7 0x5BE0CD19L

static const unsign32 K[64]={
0x428a2f98L,0x71374491L,0xb5c0fbcfL,0xe9b5dba5L,0x3956c25bL,0x59f111f1L,0x923f82a4L,0xab1c5ed5L,
0xd807aa98L,0x12835b01L,0x243185beL,0x550c7dc3L,0x72be5d74L,0x80deb1feL,0x9bdc06a7L,0xc19bf174L,
0xe49b69c1L,0xefbe4786L,0x0fc19dc6L,0x240ca1ccL,0x2de92c6fL,0x4a7484aaL,0x5cb0a9dcL,0x76f988daL,
0x983e5152L,0xa831c66dL,0xb00327c8L,0xbf597fc7L,0xc6e00bf3L,0xd5a79147L,0x06ca6351L,0x14292967L,
0x27b70a85L,0x2e1b2138L,0x4d2c6dfcL,0x53380d13L,0x650a7354L,0x766a0abbL,0x81c2c92eL,0x92722c85L,
0xa2bfe8a1L,0xa81a664bL,0xc24b8b70L,0xc76c51a3L,0xd192e819L,0xd6990624L,0xf40e3585L,0x106aa070L,
0x19a4c116L,0x1e376c08L,0x2748774cL,0x34b0bcb5L,0x391c0cb3L,0x4ed8aa4aL,0x5b9cca4fL,0x682e6ff3L,
0x748f82eeL,0x78a5636fL,0x84c87814L,0x8cc70208L,0x90befffaL,0xa4506cebL,0xbef9a3f7L,0xc67178f2L};

#define PAD 0x80
#define ZERO 0

/* functions */

#define S(n,x) (((x)>>n) | ((x)<<(32-n)))
#define R(n,x) ((x)>>n)

#define Ch(x,y,z) ((x&y)^(~(x)&z))
#define Maj(x,y,z) ((x&y)^(x&z)^(y&z))
#define Sig0(x) (S(2,x)^S(13,x)^S(22,x))
#define Sig1(x) (S(6,x)^S(11,x)^S(25,x))
#define theta0(x) (S(7,x)^S(18,x)^R(3,x))
#define theta1(x) (S(17,x)^S(19,x)^R(10,x))

/* SU= 72 */
static void HASH_transform(hash *sh)
{ /* basic transformation step */

unsign32 a,b,c,d,e,f,g,h,t1,t2;
int j;
for (j=16;j<64;j++)

sh->w[j]=theta1(sh->w[j-2])+sh->w[j-7]+theta0(sh->w[j-15])+sh->w[j-16];

a=sh->h[0]; b=sh->h[1]; c=sh->h[2]; d=sh->h[3];
e=sh->h[4]; f=sh->h[5]; g=sh->h[6]; h=sh->h[7];

for (j=0;j<64;j++)
{ /* 64 times - mush it up */

8



t1=h+Sig1(e)+Ch(e,f,g)+K[j]+sh->w[j];
t2=Sig0(a)+Maj(a,b,c);
h=g; g=f; f=e;
e=d+t1;
d=c;
c=b;
b=a;
a=t1+t2;

}

sh->h[0]+=a; sh->h[1]+=b; sh->h[2]+=c; sh->h[3]+=d;
sh->h[4]+=e; sh->h[5]+=f; sh->h[6]+=g; sh->h[7]+=h;

}

/* Initialise Hash function */
void HASH_init(hash *sh)
{ /* re-initialise */

int i;
for (i=0;i<64;i++) sh->w[i]=0L;
sh->length[0]=sh->length[1]=0L;
sh->h[0]=H0;
sh->h[1]=H1;
sh->h[2]=H2;
sh->h[3]=H3;
sh->h[4]=H4;
sh->h[5]=H5;
sh->h[6]=H6;
sh->h[7]=H7;

}

/* process a single byte */
void HASH_process(hash *sh,int byte)
{ /* process the next message byte */

int cnt;
//printf("byt= %x\n",byte);

cnt=(int)((sh->length[0]/32)%16);

sh->w[cnt]<<=8;
sh->w[cnt]|=(unsign32)(byte&0xFF);

sh->length[0]+=8;
if (sh->length[0]==0L) { sh->length[1]++; sh->length[0]=0L; }
if ((sh->length[0]%512)==0) HASH_transform(sh);

}

/* SU= 24 */
/* Generate 32-byte Hash */
void HASH_hash(hash *sh,char digest[32])
{ /* pad message and finish - supply digest */

int i;
unsign32 len0,len1;
len0=sh->length[0];
len1=sh->length[1];
HASH_process(sh,PAD);
while ((sh->length[0]%512)!=448) HASH_process(sh,ZERO);
sh->w[14]=len1;
sh->w[15]=len0;
HASH_transform(sh);
for (i=0;i<32;i++)
{ /* convert to bytes */

digest[i]=(char)((sh->h[i/4]>>(8*(3-i%4))) & 0xffL);
}
HASH_init(sh);

}

void HASH_again(char *d)
{

int i;

9



hash sh;
HASH_init(&sh);
for (i=0;i<32;i++) HASH_process(&sh,d[i]);
HASH_hash(&sh,d);

}

/* Convert byte array to base64 string */
void tobase64(char *b,char *w)
{

int i,j,k,rem,last;
int c,ch[4],len=PASSLEN;
unsigned char ptr[3];
rem=len%3; j=k=0; last=4;
while (j<len)
{

for (i=0;i<3;i++)
{

if (j<len) ptr[i]=w[j++];
else {ptr[i]=0; last--;}

}
ch[0]=(ptr[0]>>2)&0x3f;
ch[1]=((ptr[0]<<4)|(ptr[1]>>4))&0x3f;
ch[2]=((ptr[1]<<2)|(ptr[2]>>6))&0x3f;
ch[3]=ptr[2]&0x3f;
for (i=0;i<last;i++)
{

c=ch[i];
if (c<26) c+=65;
if (c>=26 && c<52) c+=71;
if (c>=52 && c<62) c-=4;
if (c==62) c='+';
if (c==63) c='/';
b[k++]=c;

}
}
if (rem>0) for (i=rem;i<3;i++) b[k++]='=';
b[k]='\0';

}

/* return 1 if password meets password policy requirement, else 0 */
int policy(char *b)
{

int i,isd,isl,isu;
isd=isl=isu=0;
for (i=0;i<PASSLEN;i++)
{

if (isdigit(b[i])) isd=1;
if (islower(b[i])) isl=1;
if (isupper(b[i])) isu=1;

}
if (isd && isl && isu) return 1;
return 0;

}

When the app is running it looks like this. Not very impressive looking. The
Master Password has been entered, and then disappears. All the user has to do
is enter the PIN, select a service from the drop-down list and then paste the
automatically calculated password into the service's password �eld.

10



Fig. 1. The Password Manager app.

11


