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Abstract. The non-interactive authenticated key exchange protocol
known as SOK after its inventors Sakai, Oghishi and Kasahara, is one of
the original pairing-based protocols. Like many such early protocols it
was designed to work with a symmetric pairing. However now it is known
that symmetric pairings are ine�cient. So the issue arises of how to mi-
grate it successfully to the setting of an e�cient asymmetric pairing. In
this short research note we consider the challenges and opportunities.

1 Introduction

The SOK protocol [7] proposes the only known practical method for non-
interactive authenticated key exchange. As originally described it is based on
a type-1 pairing [4] on a supersingular elliptic curve. A type-1 pairing operates
as G1 ×G1 → GT , where G1 is a group of points of prime order q on the curve,
and GT is a �nite extension �eld of the same order, whose extension is the so-
called embedding degree k associated with the curve. The SOK inventors were
one of the �rst to realise that by carefully matching the �eld size with the em-
bedding degree, that the discrete logarithm problem could remain hard in both
G1 and GT , and hence that the pairing was a suitable vehicle for cryptography.

A type-1 pairing has the property of symmetry, and it turns out that this
property is quite important to the SOK protocol as originally described. How-
ever time has not been kind to type-1 pairings over the intervening years. For
required levels of security either G1 or GT must be greater than strictly neces-
sary due to the restricted choice of embedding degree possible on supersingular
curves, leading to ine�ciencies. And for some of the most promising families of
supersingular curves, it turns out that the discrete logarithm problem in GT is
much easier than originally expected [5].

The most e�cient pairing is the asymmetric type-3 pairing, which works
with non-supersingular pairing-friendly curves. These operate as G1×G2 → GT ,
where G2 is a particular group of points, again of the order q, but on a twisted
elliptic curve de�ned over an extension which is a divisor of k. These curves can
be constructed to be a near perfect �t at any required level of security [3]. For
example the BN curves [1], with an embedding degree of k = 12 are an exact �t
for the AES-128 equivalent level of security. But the loss of symmetry causes a
problem for the SOK protocol.



Pairings are usually written as functions of the form g = e(A,B),where
A ∈ G1, g ∈ GT , and for a type-1 pairing B ∈ G1 and for type-3 B ∈ G2. There
are various ways in which a pairing may be calculated, but that is not an issue
here. It is assumed that there is no problem with hashing an arbitrary string to
an element in G1 or G2, but the details are omitted.

We should also mention the type-2 pairing, which allows a pairing between
a pair of elements in G2. But to preserve the symmetry property for the SOK
protocol it would have to be possible to hash arbitrary strings into the same
group of order q in G2, and there is no known way to do this [4].

2 The SOK protocol

The SOK protocol showcases the bilinearity property of the pairing

e(xA,B) = e(A, xB) = e(A,B)x

For a type-1 pairing there is also the property of symmetry

e(A,B) = e(B,A)

We �rst assume a type-1 pairing is being used. A Trusted Authority generates
a master secret s. Alice and Bob seperately visit the trusted authority, and
present their identities and prove their right to those identities in some way.
Alice is issued with her secret s.A where A = H1(�Alice�), and the hash function
H1(.) hashes the identity string to a point of order q in G1. The trusted authority
calculation is simply the well known operation of multiplication by the scalar s
of a point on an elliptic curve. Similarily Bob is issued with the secret s.B where
B = H1(�Bob�).

Now Alice and Bob can communicate using a shared key, calculated by Alice
as e(sA,B) and by Bob as e(sB,A). These keys will be the same due to bilin-
earity and symmetry. Note that by convention each can put their own secret as
the left-hand argument of the pairing, and the hashed identity of the other as
the right-hand argument.

2.1 An application

Consider now an application of this protocol to an imagined Internet of Things
(IoT) setting [6]. Each Thing is issued with a serial number and its own SOK
secret based on that serial number as an identity. These SOK secrets may be
embedded at the time of manufacture, by the manufacturer acting as a naturally
trusted authority.

When a Thing needs to communicate with another Thing, an action which
requires knowing only the identity of the other, both parties can activate SOK
to calculate the same key to encrypt their communication.

However in reality this description is probably a massive simpli�cation of a
real world IoT deployment. Are the Things capable of protecting their secrets
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from an attacker, do they support secure storage? Are they capable of calculating
a pairing? Do they communicate on a peer-to-peer basis, or client-server? Are the
things mobile or stationary, what is the network topology of their communication
links, and are they �xed or �uid? Are all Things created equal or do some have
more resources than others? Since we do not have a particular application in
mind, we merely suggest that SOK might be a nice �t for at least some of these
scenarios.

One question we can help to answer - a pairing on a BN curve at the AES-
128 level of security on a Raspberry Pi computer (Version 1, 700MHz), which
is often touted as an IoT platform, can be calculated using our own software
in just 86ms. While it has to accepted that on a very low power device any
pairing-based solution may be impracticable, it may be posssible to o�set poor
performance by caching keys and/or by using the SOK mechanism to bootstrap
into something more e�cient.

3 Migrating to a type-3 pairing

Take away the symmetry property, and things get a bit more complicated. One
thing we can exploit � in any communication context there is an initiator and a
responder. Therefore the obvious solution is to issue each entity with two secrets,
one in G1 and the other in G2, as proposed by Dupont and Enge [2]. So Alice is
issued with sA1 and sA2, where A1 = H1(�Alice�) and A2 = H2(�Alice�). We call
these Alice's lefthand and righthand secrets respectively, as this describes where
they can appear in the pairing. Similarly Bob is issued with sB1 and sB2. Now
if Alice initiates and Bob responds, Alice calculates the key as e(sA1, B2) and
Bob can calculate the same key as e(A1, sB2), where by convention the initiator
uses their lefthand secret and the responder uses their righthand secret.

That seems an appropriate and workable solution. However maybe we can
do better. Consider again the IoT setting. Now Things are divided into two
categories, Talkers and Listeners. Some Things might have only one of these
attributes, some may have both. But now this division of capabilities can be
cryptographically enforced, by issuing lefthand secrets only to talkers and right-
hand secrets only to listeners. Perhaps a listener-only Thing might be lower
powered, and perhaps its secret does not need to be so vigorously defended, as
a hacked listener secret may be of less signi�cance.

At �rst glance it may appear that a listener secret could still be used to talk
by exploiting bilinearity � if we cannot calculate e(sA1, B2) because we do not
possess sA1, we could instead calculate e(B1, sA2). But these are not the same
as A1 ̸= A2 and B1 ̸= B2.

Without making any dogmatic claims, we suggest that this attribute of SOK
on a type-3 pairing may in fact be considered as a useful feature in many IoT
contexts.
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