
M-Pin Full Technology (Version 3.1)

Michael Scott

Chief Cryptographer
MIRACL Labs

mike.scott@miracl.com

Abstract. M-Pin is a two-factor authentication protocol which has been
proposed as an alternative to Username/Password, which works in con-
junction with SSL/TLS. Here we derive a more complex MPin derivative
called M-Pin-Full which also supplants the functionality of SSL/TLS.

1 Introduction

M-Pin is a zero-knowledge authentication protocol which authenticates a client
to a server. Its unique feature is that it allows a short PIN number to be ex-
tracted from the client secret to create a token+PIN combination, facilitating
two factor authentication. The idea can easily be extended to support multifactor
authentication.

A strong client-server protocol should (a) authenticate the client to the server,
(b) authenticate the server to the client, and (c) should result in a negotiated
encryption key with which subsequent communications can be encrypted. The
standard method of implementation uses a Username/Password mechanism to
authenticate the client to the server, and the well known TLS/SSL protocol to
authenticate the server to the client and to establish the encryption key. The
weakest link here is the Username/Password mechanism which is widely regarded
as being broken. SSL itself, to a lesser extent, has been weakened by intensive
scrutiny which has revealed some exploitable vulnerabilities.

To replace Username/Password, multi-factor authentication is the most often
touted solution. Of all the possible form-factors the simple ATM-like combination
of a token and a PIN number is the most user-familiar and user-friendly.

Here we extend the M-Pin technology solution to also replace the SSL func-
tionality. Recall that M-Pin makes use of a Trusted Authority to issue client
and server secrets. Using M-Pin, no client secrets, or values derived from client
secrets, are stored on the server. The reader is encouraged to read the M-Pin
paper before continuing with this white paper.

2 M-Pin

Here we recall the original M-Pin protocol. Alice is proving to a server that
she is in possession of a valid secret, while revealing nothing about it, using a
Zero-Knowledge Proof protocol.



A Trusted Authority (TA) possesses a unique secret value s associated with
its support for a particular server. That server is issued with a secret sQ, which
represents a fixed point Q on a special elliptic curve multiplied by the TA secret
s. Alice, whose identity string is IDa, has this identity hashed and mapped to a
point A on the same curve (albeit a different group of the same order q), and is
issued with the secret sA. Alice chooses a PIN number α, and extracts this from
her secret to create her token (s− α)A. The protocol then proceeds as follows.

Alice - identity IDa

Generates random 0 < x < q

A = H(IDa)

U = xA

IDa, U →

V = −(x+ y)((s− α)A+ αA)→

Server

Generates random 0 < y < q

← y

A = H(IDa)

g = e(V,Q).e(U + yA, sQ)

if g ̸= 1, reject the connection

Table 1. M-Pin

This all works thanks to the pairing function e(., .) and its remarkable bilin-
earity property e(aP,Q) = e(P, aQ) = e(P,Q)a.

3 M-Pin-Full

This more elaborate protocol not only replaces Username/Password, but replaces
the functionality of SSL as well. Our starting point is the M-Pin protocol as de-
scribed above. The idea is to run it first (to authenticate the client to the server),
and then proceed to authenticate the server to the client via an authenticated
key exchange, which also establishes the agreed key.

The first thing to note is that both the client and the server can already
calculate a mutual authenticated encryption key! The client Alice can calculate
it as e(sA,Q), and the server as e(A, sQ). Note that for a client this is a fixed
value that can be precomputed. Now the TA also issues to Alice g1 = e(sA,Q)
and g2 = e(A,Q). Next Alice extracts the PIN from g1 by calculating g1 =
g1/g2

α = e((s− α)A,Q). Both g1 and g2 can be stored on the client along with
the token.

2



The full secret can then be reconstructed when the PIN is available as g1.g2
α,

which only requires a small amount of work as α is small.

However we must be careful to (a) protect the PIN from an active or passive
attacker who has perhaps captured the token, (b) prevent a Key Compromise
Impersonation (KCI) attack, and (c) achieve the property of Perfect Forward
Secrecy (PFS). To support the property of PFS, the standard approach adopted
here is to introduce a Diffie-Hellman component into the protocol.

This protocol requires another general hash function Hg(.) which serializes,
and hashes its input to a 256-bit value. Both sides can then extract an AES key
from this value K.

It is left as a simple exercise for the reader to confirm that both client and
server end up with the same key. Note that since the first part of the protocol
is just the original M-Pin protocol, all of its features and extensions still apply.
In particular Time Permits can be used as a revocation mechanism.

Alice - identity IDa

Generates random 0 < x, r < q

A = H(IDa)

U = xA

IDa, U →

V = −(x+ y)((s− α)A+ αA)→

R = rA→

h = H(A,U, y, V,R,W )

K = Hg((g1.g2
α)r+h|xW )

Server

Generates random 0 < y,w < q

← y

A = H(IDa)

g = e(V,Q).e(U + yA, sQ)

if g ̸= 1, reject the connection

←W = wA

h = H(A,U, y, V,R,W )

K = Hg(e(R+ hA, sQ)|wU)

Table 2. M-Pin-Full

Note that the transmission of R from the client to the server can be done at
the same time as V is transmitted, and the transmission of W from the server to
the client can be done at the same time as y is transmitted, to avoid introducing
any extra flows into the protocol.

3



4 Security – Informal

Our main concern is with an attacker who has obtained a client token and is in
a position to launch an active attack on the client’s attempted authentication in
order to determine their PIN.

For example if a client were simply to go ahead and start encrypting using
the shared key e(sA,Q), then an attacker who knew the token (s − α)A could
exhaustively try adding to the token every possible multiple of A to create X
until they hit on the right PIN, in which case X = sA and the key e(X,Q) would
decrypt the ciphertext to something sensible. To prevent this we actually use as
the key e(rsA,Q), and now an attackers knowledge of the token cannot be used
to guess the key without knowing r.

A more subtle attack is also possible. An attacker who has captured Alice’s
credentials can pretend to be a valid server to Alice by simply ignoring the initial
M-Pin protocol and then also calculating the mutual key as e(sA,Q) (rather than
as e(A, sQ) as a valid server would). However the presence of r in the calculation
of the key also prevents this Key Compromise Impersonation (KCI) attack.

Another type of KCI attack would arise if an attacker who had captured the
server secret sQ were able to use it to authenticate as a valid client. Fortunately
this is not possible, as sQ is in the wrong group, and therefore such an attacker
will not be able to proceed beyond the first part of the protocol.

An active attacker might allow Alice to complete the first part of the protocol
and then attempt to hijack the link before the calculation of the key. But observe
how the value of x is re-used for the calculation of the Diffie-Hellman component
of the key. This binds both parts of the protocol together and effectively blocks
any hijacking attempt.

5 Security - Formal

Here we concentrate on the security of the key exchange component of the overall
protocol. Recall that by the time the first part of the protocol is completed, the
client long term secret key has been reconstituted from its factors, and the client
has already authenticated successfuly to the server.

The basic key exchange consists of the transmission of rA from the client to
the server, and the calculation by the client of the partial key e(sA,Q)r+h. The
server can calculate the same partial key as e(R + hA, sQ). The value h is just
a hash of all of the data exchanged between the two parties.

Next we show that this one-pass key exchange is equivalent to the one-pass
variant of Wang’s IDAK key agreement protocol [5], section 9.5. In Wang’s pro-
tocol both partial keys are further raised to a power of 1 + hs, where hs is
composed from a different ordering of the exchanged data. However 1 + hs is
publicly known. As is well known the power of a pairing inherits all of the prop-
erties of a pairing, and therefore we choose to use the 1/(1 + hs) power, which
has the effect of cancelling out this term. Nevertheless Wang’s IDAK is a secure
key exchange protocol, and we inherit that same property.

4



Wang’s protocol is proven secure in the random oracle model under the
DBDH assumption, in the Bellare and Rogaway BR93 security model [1]. How-
ever one-pass key exchange protocols cannot provide for sender KCI resistance
[4] – for that we must assume that such an attacker is effectively blocked from
progressing to the key exchange part of our protocol by the sender authentication
that has already taken place.

Finally we observe that essentially the same protocol is described by Chow
and Choo [3], and proven secure under the computational BDH (Bilinear Diffie-
Hellman) assumption, in the Canetti-Krawczyk (CK) security model [1]. Fur-
thermore Gorantla, Boyd and Nieto [4] (section 4.3) extend this protocol again
to our one-pass setting, and provide a proof in a modified extended Canetti-
Krawczyk (eCK) setting.

One minor issue is the particular variant of the BDH problem on which our
security is based, in the context of our use of a type-3 pairing. In this setting
the relevant BDH variant is Galbraith’s BDH-3c assumption [2].

6 Discussion

It should be pointed out that M-Pin-Full is not entirely equivalent to the SSL+M-
Pin combination. The client identity is transmitted in the clear in M-Pin-Full,
whereas with SSL the entire M-Pin protocol runs under cover of SSL, which
therefore provides an anonymity feature. Of course it is always possible to run the
M-Pin-Full protocol in conjunction with SSL. An alternative solution would be
for the client to execute and complete the protocol transmitting the hash of their
identity instead of the identity itself, and then to transmit their actual identity
when the protocol had completed under the protection of the negotiated key.
The server could then compare the hash of this identity with that transmitted
earlier.

One important advantage compared to the SSL+M-Pin combination is that
any so-called phishing attack will be ineffective against this protocol, as the
phishing website will not be able to establish the mutual key K.

References

1. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer-Verlag, 2003.

2. S. Chatterjee and A. Menezes. On cryptographic protocols employing asymetric
pairings. Discrete Applied Mathematics, 159(13):1311–1322, 2011.

3. S. Chow and K. Choo. Strongly-secure identity-based key agreement and anonymous
extension. In Information Security, pages 203–220. Springer-Verlag, 2007. http:

//eprint.iacr.org/2007/018.
4. M. Gorantla, C. Boyd, and J. Nieto. ID-based one-pass authenticated key agreement.

In AISC08, pages 38 – 46. Australian Computer Society, 2008.
5. Y. Wang. Efficient identity-based and authenticated key agreement protocol. Cryp-

tology ePrint Archive, Report 2005/108, 2005. http://eprint.iacr.org/2005/108.

5


