
Late Binding for the M-Pin protocol

Michael Scott

Chief Cryptographer
Certivox Labs

mike.scott@certivox.com

Abstract. The M-Pin protocol has been proposed for use in a setting
which uses multiple Trusted Authorities. One way to realise M-Pin is
to use “early binding”. With early binding the client secret shares is-
sued by each authority are combined immediately after they are issued
to each client, inside of the client process. Here we consider the possi-
bilities of “late binding” whereby client secret shares are kept distinct.
Conceptually with early binding all of the client secret shares are added
to create a single secret, which is used to authenticate. Unless all shares
are present and correct the authentication will not succeed. With late
binding multiple individual secrets are issued as before, but each is used
to authenticate separately. Unless all authentications succeed the over-
all authentication will fail. So in both cases the outcome is the same.
However here we argue that late binding, at some extra cost, results in
a more flexible system.

1 Introduction

The reader should refer to the original M-Pin paper for definitions.
A Trusted Authority (TA) can issue a client secret as sX, where s is their

master secret, and X = H(ID) is the client’s identity hashed and mapped to an
point on a specific elliptic curve, which we consider as an element in the group
G1. Using the M-Pin protocol a client can now authenticate to an M-Pin server
equipped with a server secret sQ, where Q is a fixed element in a different group
G2.

Now a trivial way to distribute the client secret issuance functionality is to
deploy n Distributed Trusted Authorities (DTA), each of which has its own
master secret si. Client secrets can then be formed by simply adding all of these
contributions, so sX = s1X + s2X... + snX. Then proceed to authenticate to
the server using this combined secret. The server has been issued with sQ =
s1Q+ s2Q...+ snQ. The benefit is obvious – an attacker must now capture all n
components in order to reconstruct a client secret. Even if only one is missing,
they get nothing. And clearly the master secret s = s1 + s2... + sn is itself
similarly protected. So no more single-point-of-failure.

Observe now that an individual client secret share siX is indistinguishable
in form from the full client secret sX. It is a scalar multiplication of the same
element in G1. Therefore an alternative approach suggests itself. Instead of im-
mediately adding all of the client secret shares, the client instead uses them all



individually to authenticate to a server. Only if all these authentications succeed
will the overall authentication be deemed a success by the server. The former
approach we call “early binding”, and the latter “late binding”.

Now M-Pin also supports the concept of time permits. Here the identity
used by the server to confirm authentication is formed as X + Y , where Y =
H(T |ID). Here T is a representation of time, perhaps the current day. Clearly
the authentication will only succeed if the client has in their possession not only
the client secret sX, but also a “time permit” sY .

With classic early binding M-Pin, each DTA issues client secrets shares, server
secret shares, and time permits. With late binding, the client can now instead, by
arrangement with the server, “do their own thing” with secret shares. They may
decide to immediately add them (early binding), or to keep them all separate
(late binding). Or they may decide to use some combination of both ideas. In
particular DTAs which choose to issue time permits can be handled separately
from those that do not. Therefore an immediate benefit is that not all DTAs
need to issue time permits.

Another possibility is that PIN extraction might only be performed on one
of the shares. Or that one DTA might issue secret shares from which a PIN will
be extracted, and another might issue a share to be used with a fuzzy biometric,
in which case the M-Pin error detection capability might be useful. Note that by
keeping these shares separate, interactions between authentication ”factors” can
be removed. Also the server can now determine the exact cause of failure (bad
PIN? bad biometric? wrong time permit?). In fact the possibilities are endless,
and we will not attempt to enumerate them all here.

However clearly late binding requires more computation for both client and
server, and an increase in bandwidth. So it should be used sparingly. Some sim-
plifications are possible. Classic M-Pin is a 3-pass protocol, involving a client to
server phase, a server issued challenge, and a client response. Since each authen-
tication is independent, these passes can be combined so that the authentications
take place in parallel, rather than serially. So the protocol remains 3-pass, al-
though more data is transmitted in each pass. On the client and server sides
more computation seems inevitable. However parallel processing may offset this.

2 Example configuration

Here we consider the simplest scenario which demonstrates the possibilities of
late binding. We assume just two DTAs, one which supports time permits and
one which does not, but from which a PIN will be extracted.

The first DTA with master secret share s1 does not support time permits,
and issues a secret s1H(IDa) to Alice and s1.Q to the server. The second DTA
with master secret share s2 and which will issue time permits, issues a secret
s2H(IDa) to Alice and s2.Q to the server. In both cases H(.) is a suitable hash
function which hashes and maps an identity string to an element in the group
G1.

2



In the protocol as described below, Ti represents the current time slot, and
s2HT (Ti|IDa) is the personalised “time permit”, where HT (.) is another hash
function. The extracted PIN number is α.

Alice - identity IDa

Generates random x1, x2 < q

A = H(IDa)

T = HT (Ti|IDa)

D = A+ T

U1 = x1A

U2 = x2D

IDa, U1, U2 →

V1 = −(x1 + y1)(((s1 − α)A+ αA))→

V2 = −(x2 + y2)(s2A+ s2T )→

Server

Generates random y1, y2 < q

← y1, y2

A = H(IDa)

D = H(IDa) +HT (Ti|IDa)

g1 = e(V1, Q).e(U1 + y1A, s1Q)

g2 = e(V2, Q).e(U2 + y2D, s2Q)

if g1 ̸= 1 or g2 ̸= 1, reject the connection

Table 1. Late Binding M-Pin example

At first glance this configuration would be expected to double the com-
putation and bandwidth. However a possible optimization would be for the
server to calculate directly the product g = g1.g2, so g = e(V1, Q).e(U1 +
y1A, s1Q).e(V2, Q).e(U2+y2D, s2Q), and to reject the connection if this were not
equal to one. By bilinearity this can be simplified to g = e(V1 + V2, Q).e(U1 +
y1A, s1Q).e(U2 + y2D, s2Q). Products of pairings can be calculated very effi-
ciently, and the expected overhead here would only be about 10%. However this
would introduce the possibility of false positives, where g1.g2 = 1, but g1 ̸= 1
and g2 = 1/g1. But this would be very unlikely to happen in a real protocol
run, and it is hard to see how an attacker might exploit this possibility without
reversing the pairing function, which is believed to be hard. Another downside of
this approach is that it would no longer be possible for the server to distinguish
between a “bad time permit” and a “bad PIN” error.

Any error δ in the entered PIN can be calculated as before by solving the
discrete logarithm problem g1 = e(U1 + y1A,Q)δ.

3


