
Ed3363 (HighFive) � An alternative Elliptic
Curve

Michael Scott

MIRACL Labs
mike.scott@miracl.com

Abstract. We propose a new Elliptic curve at a security level signi�-
cantly greater than the standard 128 bits, that �lls a gap in current pro-
posals while bucking the expected security vs cost curve by exploiting
the new trick recently described by Granger and Scott. This essentially
reduces the cost of �eld multiplication to that of a �eld squaring.

1 Introduction

If a non-cryptographer were asked to guess how much stronger TOP SECRET
cryptography is compared with commercial strength cryptography, I would imag-
ine that most would suggest a hundred times, maybe a thousand times, maybe
even a million times. But I think many would be surprised that in fact its at
least 9,223,372,036,854,775,808 times, a number so big that it is unspeakable.
But thats the di�erence between an elliptic curve at the 128-bit level of secu-
rity and an elliptic curve at the 192-bit level. Most might consider this a little
excessive.

One hard-to-refute argument against using a higher level of security is that
if it doesn't cost very much � hey, why not. In fact the extra cost of going from
128-bit to 192 bit security depends a lot on the type of cryptography we are
considering.

For a symmetric block cipher like the AES the cost is just another two rounds
on top of the standard ten rounds, so there is a mere 20% overhead.

For elliptic curve crypto, assuming the simplest algorithm for �eld multipli-
cation of quadratic complexity, the overhead is 237.5%

For RSA crypto, assuming Karatsuba methods for �eld multiplication, the
overhead is a whopping 968%

These costs can be signi�cant. Its one thing for someone to propose the use of
an elliptic curve at the TOP SECRET level, as they may have the spare capacity
to implement it on their hardware, but spare a thought for the person tasked
to build a compatible product on a less powerful platform. If unnecessarily high
levels of security start excluding certain devices from being secured, they may
do more harm than good.

Another downside of the bigger-is-always-better position is that it might
appear to endorse snake oil crypto merchants, and their arguments for 1,000,000
bit security products.



Also as we are all aware realistically an attacker will not take on the crypto
at even the 128-bit level of security � as recent revlations have shown other
methods of attack on an implementation come in at a much lower price than a
full frontal assault on the crypto, either mathematical or brute force.

So where did these TOP SECRET recommendations come from? An interest-
ing insight is o�ered in the recent paper by Miele and Lenstra [7] who state that
�With 128-bit security more than su�cient for the foreseeable future, it is not
clear either what purpose is served by higher security levels, other than catering
to TOP SECRET 192-bit security from [8]. In this context it is interesting to
note that 256-bit AES, also prescribed by [8] for TOP SECRET, was introduced
only to still have a 128-bit secure symmetric cipher in the post-quantum world
(...), and that 192-bit security was merely a side-e�ect that resulted from the
calculation (128 + 256)/2 (...). In that world ECC is obsolete anyhow.�

Recently there has been a drift away from the very highest suggested security
level of AES-256, arguably as a belated recognition that this has no place in a
pre-quantum world. Proposals for new standard high security elliptic curves
have tended to fall into the gap between AES-192 and AES-256. For example
Curve41417 [2] and Mike Hamburg's Ed448 �Goldilocks� curve [6].

Nevertheless there is an undeniable demand for a higher level of security.
Here we attempt to satisfy this demand by suggesting a new elliptic curve, which
because of the fortunate form of its modulus, holds out the possibility of incurring
only a very modest extra cost, while being 1,099,511,627,776 times more secure.
That is about a trillion times stronger than the commercial standard.

2 Picking a curve

One downside of elliptic curve cryptography is the need to base our protocols
on a particular curve. This issue simply doesn't arise for RSA and �nite �eld
methods. Its an extra hurdle of trust we need to get over. Who chose it, how
and why?

Clearly we have to be selective about the elliptic curves that we choose to use.
Pick one completely at random, and its group order will probably be composite
and hence any scheme built upon it can be easily cryptanalysed. However just
how selective we should be has been the subject of much debate. Typically we
would like to select on the basis of better performance and better security against
even the most obscure attacks. The counter-argument is that by misfortune we
may pick our curve from a subset that has a currently unknown weakness that
doesn't apply to the larger enclosing family of curves. Often these concerns
cannot be scienti�cally answered, as we just don't know. Its a judgement call,
made easier only by the lapse of time during which no weakness has been found.
But the same is true of much of cryptography � belief in the security of the
AES for example is not based on any scienti�c proof, but rather on the basis of
the lapse of time with no signi�cant weakness having been found by very many
clever people studying it.

Here are some classes of special curves that have been proposed.

2



� Endomorphism curves (faster)
� CM curves (quicker to generate)
� Curves with special primes (faster)
� Curves with strong twists (more secure)

Our judgement call is that there is nothing wrong with any of these curves.
However endomorphism curves have patent issues which will take a few years to
eliminate (but those years will eventually only add to our con�dence in them).
Since we are not planning on generating random curves in real time [7], there
is no point in using the CM method to �nd them. Our curve will use a special
prime for the performance advantage that it brings, and will have a strong twist
as although this property hugely increases the time it takes to �nd a suitable
curve we are convinced that this adds security against plausible attacks.

Since we are proposing a new curve it makes sense to pick one with the best
elliptic curve parameterisation, that is an Edwards curves [1]. A minor issue
with the Edwards parameterisation is that the curve order is at best four times
a prime, 4q. Since our choice of modulus p = 5 mod 8, if the curve order is
0 mod 4 then the twist order must be at best 0 mod 8, and visa versa. Points
(x, y) on an Edwards curve where x, y ∈ Fp satisfy the equation

y2 + x2 = 1 + dx2y2

A sine qua non of trusted elliptic curve selection is that the method of se-
lection should be absolutely transparent, such that the actual curve chosen is
largely outside of the control of the proposer. This quality is known as non-
rigidity [4]. Here we follow the now standard approach of searching for the curve
with the minimum absolute value for a non-square d such that both the curve
and the twist have orders four or eight times a prime.

However we had another criteria in mind which was to exploit the Granger-
Scott idea [5] for fast modular arithmetic. This guided our choice of the modulus
p. We also wanted a curve that would be implemented just as conveniently on
both 32-bit and 64-bit architectures. Whereas a nice �t to a 64-bit architecture
facilitates record-setting, in our view a good �t to a 32-bit architecture is prob-
ably more important in practise. As a bonus we wanted our implementation to
be e�cient even when written in a portable high-level language.

3 Our Modulus

Our chosen modulus is p = 2336−3. Note that elements modulo this 336-bit prime
can be represented either by 6 digits to the base 256 on a 64-bit architecture,
or by 12 digits to the base 228 on a 32-bit architecture. Our description here
will assume the former, although the extension to the latter is straightforward.
Given the non-saturated representation, we can add and subtract multiple digits
and products of digits without fear of over�ow.

As pointed out in [5] the product of two such numbers modulo 2336 − 1 can
be written simply as

3



[x0y0 + x1y5 + x2y4 + x3y3 + x4y2 + x5y1,

x0y1 + x1y0 + x2y5 + x3y4 + x4y3 + x5y2,

x0y2 + x1y1 + x2y0 + x3y5 + x4y4 + x5y3,

x0y3 + x1y2 + x2y1 + x3y0 + x4y5 + x5y4,

x0y4 + x1y3 + x2y2 + x3y1 + x4y0 + x5y5,

x0y5 + x1y4 + x2y3 + x3y2 + x4y1 + x5y0].

(1)

where xi and yi are the digits of the numbers being multiplied. The clever
bit is the observation that, given s =

∑5
i=0 xiyi this can be written as

[s− (x1 − x5)(y1 − y5)− (x2 − x4)(y2 − y4),

s− (x1 − x0)(y1 − y0)− (x2 − x5)(y2 − y5)− (x3 − x4)(y3 − y4),

s− (x2 − x0)(y2 − y0)− (x3 − x5)(y3 − y5),

s− (x2 − x1)(y2 − y1)− (x3 − x0)(y3 − y0)− (x4 − x5)(y4 − y5),

s− (x3 − x1)(y3 − y1)− (x4 − x0)(y4 − y0),

s− (x3 − x2)(y3 − y2)− (x4 − x1)(y4 − y1)− (x5 − x0)(y5 − y0)].

(2)

Observe that the number of partial products to be calculated has fallen from
36 to 21, which is the same number required for a modular squaring using stan-
dard methods. However we are not quite done yet, as our modulus is the prime
2336 − 3, not the non-prime 2336 − 1.

The actual product modulo 2336 − 3 should be

[x0y0 + 3x1y5 + 3x2y4 + 3x3y3 + 3x4y2 + 3x5y1,

x0y1 + x1y0 + 3x2y5 + 3x3y4 + 3x4y3 + 3x5y2,

x0y2 + x1y1 + x2y0 + 3x3y5 + 3x4y4 + 3x5y3,

x0y3 + x1y2 + x2y1 + x3y0 + 3x4y5 + 3x5y4,

x0y4 + x1y3 + x2y2 + x3y1 + x4y0 + 3x5y5,

x0y5 + x1y4 + x2y3 + x3y2 + x4y1 + x5y0].

(3)

Which can be calculated at the cost of some extra additions as

[3[s− (x1 − x5)(y1 − y5)− (x2 − x4)(y2 − y4)]− 2x0y0,

3[s− (x2 − x5)(y2 − y5)− (x3 − x4)(y3 − y4)]− (x1 − x0)(y1 − y0)− 2(x0y0 + x1y1),

3[s− (x3 − x5)(y3 − y5)]− (x2 − x0)(y2 − y0)− 2(x0y0 + x1y1 + x2y2),

s− (x2 − x1)(y2 − y1)− (x3 − x0)(y3 − y0)− 3[(x4 − x5)](y4 − y5) + 2(x4y4 + x5y5),

s− (x3 − x1)(y3 − y1)− (x4 − x0)(y4 − y0) + 2x5y5,

s− (x3 − x2)(y3 − y2)− (x4 − x1)(y4 − y1)− (x5 − x0)(y5 − y0)].

(4)

4



Further manual optimization of these equations provide some extra savings.
Finally the digits in our product require carry propagation, and �nal reduction.
We omit the details.

4 Our New Curve

Following the process described above we �nd the Edwards curve

y2 + x2 = 1 + 11111x2y2

Fortuitously our constant d has a nice easily memorised form � �ve ones, like
the �ngers on your hand. Hence the name. The number of points on the curve
is 8q where q is the prime

200000000000000000000000000000000000000000071415FA9850C0BD6B87F93BAA7B2F95973E9FA80516

A generator point of order q is

[C16, C0DC616B56502E18E1C161D007853D1B14B46C3811C7EF435B6DB5D5650CA0365DB12BEC68505FE863216]

5 Implementation

Source code for both 32 and 64-bit versions may be found here.1

Observe that the 32-bit code is e�ectively written in standard portable C.
The 64-bit code requires partial support for a 128-bit integer type, which unfor-
tunately is not part of the standard, although the popular Gnu GCC compiler
does support it. Translation of the 32-bit code to any other language should be
straightforward.

The code implements variable point multiplication, which is the core oper-
ation at the heart of elliptic curve cryptography. To avoid side-channel attacks
(including cache attacks) we use the �xed window method described in [2] using a
window of size 4. Points are represented in extended {X,Y,Z,T} coordinates and
manipulated using formulae from the EFD [3]. For modular inversion as required
to convert from projective to a�ne coordinates we use a constant time method
based on the well known fact that x−1 = xp−2 mod p, manually optimized to
minimize the number of �eld multiplications.

On a 64-bit Intel Haswell processor point multiplication takes 333,000 cy-
cles approximately. On a 32-bit ARM Cortex A7 based Raspberry pi version 2,
clocked at 900MHz, it takes 3.7ms. We would assume that these timings could
be improved upon.

Thanks to Rob Granger for inspiring a name for the curve.

1 See indigo.ie/~mscott/ed336_32.cpp and indigo.ie/~mscott/ed336_64.cpp for
the 32-bit and 64-bit code respectively.

5



References

1. D. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
Asiacrypt 2007, volume 4833 of Lecture Notes in Computer Science, pages 29�50.
Springer-Verlag, 2007.

2. D.J. Bernstein, C. Chuengsatiansup, and T. Lange. Curve41417: Karatsuba revis-
ited. In CHES 2014, volume 8731 of Lecture Notes in Computer Science, pages
316�334. Springer-Verlag, 2014.

3. D.J. Bernstein and T. Lange. Explicit formulas database, 2015. http://

hyperelliptic.org/EFD.
4. D.J. Bernstein and T. Lange. Safecurves: choosing safe curves for elliptic-curve

cryptography, 2015. http://safecurves.cr.yp.to.
5. R. Granger and M. Scott. Faster ECC over F2521−1. In Public-Key Cryptography

� PKC 2015, volume 9020 of Lecture Notes in Computer Science, pages 539�553.
Springer Berlin Heidelberg, 2015.

6. M. Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625, 2015. http://eprint.iacr.org/2015/625.

7. A. Miele and A. K. Lenstra. E�cient ephemeral elliptic curve cryptographic keys.
Cryptology ePrint Archive, Report 2015/647, 2015. http://eprint.iacr.org/.

8. NIST. Workshop on elliptic curve cryptography standards, 2015. http://www.nist.
gov/itl/csd/ct/ecc-workshop.cfm.

6


